Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nat Immunol ; 24(6): 955-965, 2023 06.
Article in English | MEDLINE | ID: covidwho-2306685

ABSTRACT

The B cell response to different pathogens uses tailored effector mechanisms and results in functionally specialized memory B (Bm) cell subsets, including CD21+ resting, CD21-CD27+ activated and CD21-CD27- Bm cells. The interrelatedness between these Bm cell subsets remains unknown. Here we showed that single severe acute respiratory syndrome coronavirus 2-specific Bm cell clones showed plasticity upon antigen rechallenge in previously exposed individuals. CD21- Bm cells were the predominant subsets during acute infection and early after severe acute respiratory syndrome coronavirus 2-specific immunization. At months 6 and 12 post-infection, CD21+ resting Bm cells were the major Bm cell subset in the circulation and were also detected in peripheral lymphoid organs, where they carried tissue residency markers. Tracking of individual B cell clones by B cell receptor sequencing revealed that previously fated Bm cell clones could redifferentiate upon antigen rechallenge into other Bm cell subsets, including CD21-CD27- Bm cells, demonstrating that single Bm cell clones can adopt functionally different trajectories.


Subject(s)
B-Lymphocyte Subsets , COVID-19 , Humans , SARS-CoV-2 , Memory B Cells , B-Lymphocytes
2.
Nature ; 602(7895): 148-155, 2022 02.
Article in English | MEDLINE | ID: covidwho-1556858

ABSTRACT

Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2. Since the outbreak of the ongoing COVID-19 pandemic, a key question has focused on which SARS-CoV-2-specific T cells stimulated during acute infection give rise to long-lived memory T cells3. Here, using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor sequencing, we longitudinally characterized individual SARS-CoV-2-specific CD8+ T cells of patients with COVID-19 from acute infection to 1 year into recovery and found a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting 1 year after acute infection express CD45RA, IL-7 receptor-α and T cell factor 1, but they maintain low expression of CCR7, thus resembling CD45RA+ effector memory T cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones that give rise to long-lived cells, whereas prolonged proliferation and mechanistic target of rapamycin signalling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+ T cells following an acute viral infection.


Subject(s)
Antigens, Viral/immunology , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , SARS-CoV-2/immunology , Acute Disease , COVID-19/virology , Cell Proliferation , Clone Cells/cytology , Clone Cells/immunology , Humans , Interferons/immunology , Interleukin-7 Receptor alpha Subunit/metabolism , Leukocyte Common Antigens/metabolism , Longitudinal Studies , Mechanistic Target of Rapamycin Complex 1/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, CCR7/metabolism , T Cell Transcription Factor 1/metabolism , Time Factors , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL